

Agrium Conda Phosphate Operations*

3010 Conda Road Soda Springs, ID 83276

Tel: 208-547-4381 Fax: 208-547-2550

April 26, 2005

File No.: EN-04-055

CERTIFIED MAIL #7001 0320 0003 0613 6822

Air Quality Permit Compliance Department of Environmental Quality Pocatello Regional Office 444 Hospital Way #300 Pocatello, Idaho 83201

Attn: Richard Elkins

RE: Compliance Test Reports

Dear Mr. Elkins,

Please find enclosed two (2) copies of reports for annual source testing conducted at our facility March 30, 2005 and March 31, 2005 by TETCO, a Lehi, Utah testing company. All stack tests were conducted at worst-case normal conditions, as described at IDAPA 58.01.01.157.02.a. The report includes test data for the following sources at our Conda facility, listed with applicable Tier I Operating Permit 029-00003 sections limiting emissions:

Wet Process Phosphoric Acid Process Line (Section 6.1 and 6.26) Superphosphoric Acid Production Process Line (Section 6.2 and 6.26)

In addition to the reports produced by TETCO, I have included operational monitored data and calculations demonstrating compliance/non-compliance for each test. This information is included with this letter as Supplements 1 & 2 to TETCO's report. Summaries of data and emissions calculations appear below:

Wet Process Phosphoric Acid Process Line (Section 6.1 and 6.26)

Test date: March 30, 2005

Permitted fluoride emissions: 0.0135 lb/Ton P₂O₅ feed

Fluoride emissions during test: 0.0014 lb/Ton P₂O₅ feed [In compliance]

 \rightarrow P₂O₅ feed to process during test:

66.12 tons/hr

Pressure drop across Phos scrubber:

9.3 inches H₂O

Pressure drop across CV scrubber:

2.3 inches H₂O

Phos scrubber flow rate:

1201 gpm

CV scrubber flow rate:

216 gpm

^{*} A Registered Name of Nu-West Industries, Inc.

Superphosphoric Acid Production Process Line (Section 6.2 and 6.26)

Test date: March 31, 2005

Permitted fluoride emissions: 0.0087 lb/Ton P₂O₅ feed

→ Fluoride emissions during test: 0.0046 lb/Ton P₂O₅ feed [In-compliance]

 P_2O_5 feed to process during test: 32.15 tons/hr Pressure drop across SPA scrubber: 7.0 inches H_2O

SPA scrubber flow rate: 576 gpm

As indicated by the sampling data provided by TETCO and the summaries above, all of the source tests and calculations demonstrated compliance to permit limitations.

Opacity readings were performed at similar operating conditions after the tests, due to adverse weather conditions during the tests..

It is our pleasure and opportunity to provide you with this source test information. We appreciate DEQ's assistance in helping us maintain compliance with state and federal air quality regulations.

If you have any questions concerning this letter or the enclosed Compliance Report by TETCO, please call me at (208) 547-4381 extension 263.

· CHEST TOTAL

The state of the s

9 HO. ...

Sincerely.

Monty Johnson

Environmental Manager

Attachments: Supplements 1& 2 to TETCO Reports

Enclosures: two (2) copies of TETCO reports for March 30, 2005 and March 31, 2005

TABLE IV COMPLETE RESULTS AGRICAL CAGRIUM

PHOSPHORIC ACID PLANT SCRUBBER EXHAUST

Cumbal	D					
Symbol Date	Description	Dimensions	-			
Begir			3/30/05			
Enc			13:32	15:16	16:45	
			14:34	16:19	17:47	
Pb_n		In. Hg. Abs	23.65	23.65	23.65	
ΔΗ	•	In. H ₂ O	1.679	1.755	1.743	
Y		dimensionless	1.004	1.004	1.004	
Vm		cf	49.170	50.256	49.981	
$T_{\rm m}$		°F	79.9	83.7	80.3	
$\sqrt{\Delta P}$		Root In. H ₂ O	0.6460	0.6483	0.6457	
Wt_{wc}	Weight Water Collected	Grams	37.9	36.8	39.0	
T_t	Duration of Test	Minutes	60	60	60	
C_p	Pitot Tube Coefficient	Dimensionless	0.84	0.84	0.84	
D_n	Nozzle Diameter	Inches	0.2545	0.2545	0.2545	
CO_2	Volume % Carbon Dioxide	Percent	1.80	1.80	1.60	
O_2	Volume % Oxygen	Percent	20.20	20.40	20.80	
N ₂ & CO	Volume % Nitrogen and Carbon Monoxide	Percent	78.00	77.80	77.60	
Vm _{std}	Volume Gas Sampled (Standard)	dscf	38.361	38.943		
Vw	Volume Water Vapor	scf	1.787	1.735	38.972	
Bw_s	Fraction H ₂ O in Stack Gas	Fraction	0.045	0.043	1.839	
X_d	Fraction of Dry Gas	Fraction	0.955		0.045	
M_d	Molecular Wt. Dry Gas	lb/lbmol	29.10	0.957	0.955	
M_s	Molecular Wt. Stack Gas			29.10	29.09	
%I	Percent Isokinetic	lb/lbmol	28.60	28.63	28.59	
	1 oronic isomnetic	Percent	99.0	100.0	100.7	AVG
, T _a	Avg Stack Temperature	°F	82.3	83.5	83.3	83
As	Stack Cross Sectional Area	Sq. Ft.	35.785	35.785	35.785	
P_G	Stack Static Pressure	In. H ₂ O	-0.21	-0.21	-0.21	
Pbp	Sample Port Barometric Pressure	In. Hg. Abs	23.59	23.59	23.59	
P_s	Stack Pressure	In. Hg. Abs	23.575	23.575	23.575	
Q_{s}	Stack Gas Volumetric Flow Rate (Std)	dscfm	6.54E+04	6.57E+04	6.54E+04	6.55E+04
Q_a	Stack Gas Volumetric Flow Rate (Actual)	cfm	8.94E+04	8.97E+04	8.94E+04	8.95E+04
V_s	Velocity of Stack Gas	fpm	2.50E+03	2.51E+03	2.50E+03	
And the second				2.3115103	2.30ET03	2.50E+03
M _{F Gross}	Mass of Fluoride in Sample	mg	0.588	0.301	0.293	
$M_{F Blank}$	Mass of Fluoride in Sample Blank	mg	0.00	0.00	0.00	
$M_{F Net}$	Net Mass of Fluoride in Sample	mg	0.588	0.301	0.293	
C_{F}	Concentration of Fluoride	lb / dscf	3.38E-08	1.70E-08	1 665 00	2.250.00
C_{F}	Concentration of Fluoride		1.533E-08		1.66E-08	2.25E-08
		mg/dscf	1.333E-U2	7.729E-03	7.518E-03	1.019E-02
ER_F	Emission Rate of Fluoride	lb/hr	0.133	0.067	0.065	0.088
						0,007

0.087 (66.12) = .00149

TABLE V Mana COMPLETE RESULTS

AGRIUM CONDA PHOSPHATE CONDITIONING VENT SCRUBBER

Symbol	Description	Dimensions	Run #1	Run #2	Pun #2	
Date			3/30/05			
Begin	Time Test Began		13:32	15:16	16:45	
End	Time Test Ended		14:34	16:19	17:47	
Pb_{m}	Meter Barometric Pressure	In. Hg. Abs	23.77	23.77	23.77	
ΔΗ	Orifice Pressure Drop	In. H ₂ O	1.501	1.618	1.676	
Y	Meter Calibration Y Factor	dimensionless	1.016	1.016	1.016	
Vm	Volume Gas Sampled-Meter Conditions	cf	49.460	51.812	52.519	
$T_{\rm m}$	Avg Meter Temperature	°F	71.0	72.8	80.8	
$\sqrt{\Delta P}$	Sq Root Velocity Head	Root In. H ₂ O	0.8337	0.8645	0.8806	
Wt_{wc}	Weight Water Collected	Grams	20.5	16.9	22.1	
T_t	Duration of Test	Minutes	60	60	60	
C_p	Pitot Tube Coefficient	Dimensionless	0.84	0.84	0.84	
D_n	Nozzle Diameter	Inches	0.2220	0.2220	0.2220	
CO_2	Volume % Carbon Dioxide	Percent	0.00	0.00	0.00	
O_2	Volume % Oxygen	Percent	20.90	20.90	20.90	
N ₂ & CO	Volume % Nitrogen and Carbon Monoxide	Percent	79.10	79.10	79.10	
Vm _{std}	Volume Gas Sampled (Standard)	dscf	39.881	41.651	41.603	
$\mathbf{v} = \mathbf{v}$	Volume Water Vapor	scf	0.967	0.797	1.042	
Bw_s	Fraction H ₂ O in Stack Gas	Fraction	0.023	0.019	0.022	
X_d	Fraction of Dry Gas	Fraction	0.977	0.981	0.978	
M_d	Molecular Wt. Dry Gas	lb/lbmol	28.84	28.84	28.84	
M_s	Molecular Wt. Stack Gas	lb/lbmol	28.59	28.63	28.59	4.5 E. A. B.
%I	Percent Isokinetic	Percent	100.0	100.3	98.7	AVG
T_{s}	Avg Stack Temperature	F	60.9	60.5	60.6	The state of the s
A _s	Stack Cross Sectional Area	Sq. Ft.	3.142	3.142	3.142	
P_{G}	Stack Static Pressure	In. H ₂ O	-0.49	-0.49	-0.49	Salar Contraction
Pbp	Sample Port Barometric Pressure	In. Hg. Abs	23.77	23.77	23.77	
P_s	Stack Pressure	In. Hg. Abs	23.734	23.734	23.734	26 78 8070 1 40 800 100
Q_s	Stack Gas Volumetric Flow Rate (Std)	dscfm	7.77E+03	8.09E+03	8.21E+03	8.02E+03
Q_a	Stack Gas Volumetric Flow Rate (Actual)	cfm	9.89E+03	1.02E+04	1.04E+04	1.02E+04
V _s	Velocity of Stack Gas	fpm	3.15E+03	3.26E+03	3.32E+03	3.24E+03
$M_{F Gross}$	Mass of Fluoride in Sample	mg	0.314	0.312	0.227	Lat 1980 at a lay
$M_{F\;Blank}$	Mass of Fluoride in Sample Blank	mg	0.00	0.00	0.00	
$M_{\text{F Net}}$	Net Mass of Fluoride in Sample	mg	0.314	0.312	0.227	
C_{F}	Concentration of Fluoride	lb / dscf	1.74E-08	1.65E-08	1.20E-08	1.53E-08
C_{F}	Concentration of Fluoride	mg/dscf	7.873E-03	7.491E-03	5.456E-03	6.940E-03
ER_F	Emission Rate of Fluoride	lb/hr	0.008	0.008	0.006	0.007

Generic Any Materials Default Subreport 1	als.		*	* .			
			ITY+30L	Hd)SG	TY+SOLIDS(PH GRAVIMETRIC P205 SITY, SOLIDS, &	SITY,SO	LIDS,&
			Density Solids	Solids	Grav P205	Density Solids	Solids
			G/MI	%	wt.%	G/MI	%
Sample Date/Time	Time User Sample ID	Sample ID (AVG) (AVG)	(AVG)	(AVG)	(AVG)	(AVG) (AVG)	(AVG)
3/30/2005 6:00	5 6:00 PHR24HR	200107194			31.22		1.81 67.82

Nu-west Industries, Inc. d.b.a. Agrium Conda Phosphate Operations 3010 Conda Road Soda Springs, Idaho 83276

32.13 tons P2O5/hr

Fluoride Emission Calculation (40 CFR 63.606(c)(1):

$$E = \left(\sum_{i=1}^{N} C_{Si}Q_{Sdi}\right) / (PK)$$

Where:

E = emission rate of total fluorides, (lb/ton) of equivalent P2O5 feed

C_{si} = concentration of total fluorides from emission point "i", (mg/dscf)

Qsdi = volumetric flow rate of effluent gas from emission point "i", (dscf/hr)

N = number of emission points associated with the affected facility.

P = equivalent P₂O₅ feed rate, (ton/hr)

K = conversion factor, (453,600 mg/lb)

Run #1 SPA 3/31/05

 $Csi = 1.83 \text{ mg F}/ 42.647 DSCF}$

 $Q_{sdi} = 9860 DSCFM 591600 DSCFH$

N = 1

P = 121 gpm 1.798 SPG

59.06 % P2O5 0.2503 gpm-tph P=

K = conversion factor 453600 mg/lb

E = 0.001742 lbs F/ton P2O5 Emission limit = 0.0087 lbs F/ton P2O5 % of Standard = 20.0

Run #2 SPA 3/31/05

Csi = 5.14 mg F/ 43.095 DSCF

Qsdi = 9920 DSCFM 595200 DSCFH

N = 1

P = 121 gpm 1.798 SPG

59.06 % P2O5 0.2503 gpm-tph P= 32.16 tons P2O5/hr

K = conversion factor 453600 mg/lb

E = 0.004866 lbs F/ton P2O5 Emission limit = 0.0087 lbs F/ton P2O5 % of Standard = 55.9

Run #3 SPA 3/31/05

Csi = 7.86 mg F/ 42.836 DSCF

 $Q_{sdi} = 9670 DSCFM$ 580200 DSCFH

N = 1

P = 121 gpm 1.798 SPG

59.06 % P2O5 0.2503 gpm-tph P= 32.16 tons P2O5/hr

K = conversion factor 453600 mg/lb

E = 0.007298 lbs F/ton P2O5 Emission limit = 0.0087 lbs F/ton P2O5 % of Standard = 83.9

% of Std. Ave. = 53.3

TABLE VI COMPLETE RESULTS AGRIUM

SUPERPHOSPHORIC ACID PLANT SCRUBBER (SPA)

~	Description	Dimension	s Run#	1 Run #2) !!2		
	ate .		3/31/0		_	-	
Beg	1		8:43	10:20			
E	nd Time Test Ended		9:47	11:24	11:48 12:51		
Pl	b _m Meter Barometric Pressure	In. Hg. Abs					
Δ	AH Orifice Pressure Drop	In. H ₂ O	24.28		24.28		
	Y Meter Calibration Y Factor	dimensionless	1.725	-1,05	1.725		
	m Volume Gas SampledMeter Conditions	cf	1.016 51.681		1.016		
	m Avg Meter Temperature	°F	70.3				
$\sqrt{\Delta}$	P Sq Root Velocity Head	Root In. H ₂ O	0.4644	78.3	82.7		
Wt	wc Weight Water Collected	Grams			0.4604		
7	T _t Duration of Test	Minutes	13.3	18.6	21.1		
C	Pitot Tube Coefficient		60	60	60		
D		Dimensionless	0.84	0.84	0.84		
CO		Inches	0.3080	0.3080	0.3080		
0		Percent	0.00	0.00	0.00		
$N_2 \& CC$	7.0	Percent	20.90	20.90	20.90		
Vm _{sto}	and caroon monoxide	Percent	79.10	79.10	79.10		
Vw		dscf	42.647	43.095	42.836		
Bw_s	Taker vapor	scf	0.627	0.877	0.995		
X_d		Fraction	0.014	0.020	0.023		
		Fraction	0.986	0.980	0.977		
M_d	•	lb/lbmol	28.84	28.84	28.84		
M _s		lb/lbmol	28.68	28.62	28.59		
%I	Percent Isokinetic	Percent	98.5	98.9	100.9	AVG	
T_s	Avg Stack Temperature	°F	65.9				
A_s	Stack Cross Sectional Area	Sq. Ft.	7.060	68.5	70.2	68	1.00
P_G	Stack Static Pressure	In. H ₂ O	7.069	7.069	7.069		
Pb_{p}	Sample Port Barometric Pressure	1	-0.09	-0.09	-0.09		
P_s	Stack Pressure	In. Hg. Abs	24.24	24.24	24.24		
Q_s	Stack Gas Volumetric Flow Rate (Std)	In. Hg. Abs	24.233	24.233	24.233		
Q_a	Stack Gas Volumetric Flow Rate (Actual)	dscfm	9.86E+03	9.92E+03	9.67E+03	9.82E+03	
V_s	Velocity of Stack Gas	cfm	1.23E+04	1.25E+04	1.23E+04	1.24E+04	
	San	fpm	1.74E+03	1.77E+03	1.74E+03	1.75E+03	
M _{F Gross}	Mass of Fluoride in Sample	mg	1.83	5.14	7.86		
$M_{F \; Blank}$	Mass of Fluoride in Sample Blank	· mg	0.00	0.00			
$M_{F\ Net}$	Net Mass of Fluoride in Sample	mg	1.83	5.14	0.00		
C_{F}	Concentration of Fluoride				7.86		
C_{F}	Concentration of Fluoride		9.460E-08	2.629E-07	4.045E-07	2.540E-07	
		mg/dscf	4.291E-02	1.193E-01	1.835E-01	1.152E-01	
ER_F	Emission Rate of Fluoride	lb/hr	0.056	0.157	0.235		
				0.137	0.233	0.149	non/o/
		- • •				32.18	=,00A6

APR 2 9 2005

IDAHO DEPARTMENT OF ENVIRONMENTAL QUALITY

FLUORIDE COMPLIANCE TESTS CONDUCTED ON THE PHOSPHORIC ACID PLANT STACK AND THE CONDITIONING VENT SCRUBBER STACK

FOR NU-WEST INDUSTRIES, INC. AGRIUM CONDA PHOSHPATE OPERATIONS

SODA SPRINGS, IDAHO

March 30, 2005

by:

TETCO 90 East Main Lehi, UT 84043 Phone: 801 768-0973 Fax: 801 768-0880

Prepared for:

Nu-West Industries, Inc., Agrium 3010 Conda Road Soda Springs, ID 83276

Date of Report:

April 20, 2005

SUMMARY OF RESULTS

Emission Results

Table I shows the fluoride emission results. Tables IV and V in Appendix A have more detailed testing data.

Table I Measured Fluoride Emissions Phosphoric Acid Conditioning Vent Scrubber Run# lb/dscf mg/dscf lb/hr lb/dscf mg/dscf lb/hr 1 3.38e-08 1.53E-02 0.13 1.74E-08 7.87E-03 0.008 2 1.70E-08 7.73E-03 0.07 7.49E-03 1.65E-08 0.008 3 1.66E-08 7.52E-03 0.07 1.20E-08 5.46E-03 0.006 AVE 2.25E-08 1.02E-02 0.88 1.53E-08 6.94E-03 0.007

Allowable Emissions

The allowable fluoride emissions for the Phosphoric Acid Plant Stack are 0.01350 lb/ton equivalent P_2O_5 feed as found in 40 CFR 63.603 (a).

Process Data

The process was operated according to standard procedures. All pertinent process information was available for recording by agency personnel. Production data will be submitted by Agrium personnel.

Discussion of Errors or Irregularities

None.

Percent Isokinetic Sampling

The Method 13B test runs were isokinetic within the $\pm 10\%$ of 100% criterion specified in the Federal Register. Isokinetic values for each test run are presented in Table II.

TABLE II Percent Isokinetic Sampling

	Percent Isokinetics				
Run #	Phosphoric Acid	Conditioning Vent Scrubber			
1	99	100			
2	100	100			
3	101	99			

TABLE IV COMPLETE RESULTS AGRIUM PHOSPHORIC ACID PLANT SCRUBBER EXHAUST

Symbol	Description	Dimensions	Run #1	Run #2	Run #3	
Date			3/30/05			
Begin	5		13:32	15:16	16:45	
End	Time Test Ended		14:34	16:19	17:47	
Pb_{m}	Meter Barometric Pressure	In. Hg. Abs	23.65	23.65	23.65	
ΔH		In. H ₂ O	1.679	1.755	1.743	
Y		dimensionless	1.004	1.004	1.004	
Vm		cf	49.170	50.256	49.981	
$T_{\rm m}$	Avg Meter Temperature	°F	79.9	83.7	80.3	
$\sqrt{\Delta P}$	Sq Root Velocity Head	Root In. H ₂ O	0.6460	0.6483	0.6457	
Wt_{wc}	Weight Water Collected	Grams	37.9	36.8	39.0	
T_t	Duration of Test	Minutes	60	60	60	
C_p	Pitot Tube Coefficient	Dimensionless	0.84	0.84	0.84	
D_n	Nozzle Diameter	Inches	0.2545	0.2545	0.2545	
CO_2	Volume % Carbon Dioxide	Percent	1.80	1.80	1.60	
O_2	Volume % Oxygen	Percent	20.20	20.40		
$N_2 \& CO$	Volume % Nitrogen and Carbon Monoxide	Percent	78.00	77.80	20.80	
Vm _{std}	Volume Gas Sampled (Standard)	dscf	38.361	38.943	77.60	
Vw	Volume Water Vapor	scf	1.787	1.735	38.972	
Bw_s	Fraction H ₂ O in Stack Gas	Fraction	0.045	0.043	1.839	
X_d	Fraction of Dry Gas	Fraction	0.955		0.045	
M_d	Molecular Wt. Dry Gas	lb/lbmol	29.10	0.957	0.955	
M_s	Molecular Wt. Stack Gas	lb/lbmol	28.60	29.10	29.09	
%I	Percent Isokinetic	Percent		28.63	28.59	
			99.0	100.0	100.7	AVG
T_s	Avg Stack Temperature	°F	82.8	83.5	83.3	83
A_s	Stack Cross Sectional Area	Sq. Ft.	35.785	35.785	35.785	
P_{G}	Stack Static Pressure	In. H ₂ O	-0.21	-0.21	-0.21	
Pb_p	Sample Port Barometric Pressure	In. Hg. Abs	23.59	23.59	23.59	
P_s	Stack Pressure	In. Hg. Abs	23.575	23.575	23.575	
Q_s	Stack Gas Volumetric Flow Rate (Std)	dscfm	6.54E+04	6.57E+04	6.54E+04	6.55E+04
Q_a	Stack Gas Volumetric Flow Rate (Actual)	cfm	8.94E+04	8.97E+04	8.94E+04	8.95E+04
V_s	Velocity of Stack Gas	fpm	2.50E+03	2.51E+03	2.50E+03	2.50E+03
M_{FGross}	Mass of Fluoride in Sample	ma	0.588		Commence of the commence of th	
M _{F Blank}	Mass of Fluoride in Sample Blank	mg mg		0.301	0.293	
M _{F Net}	Net Mass of Fluoride in Sample	mg	0.00	0.00	0.00	
	and the sample	mg	0.588	0.301	0.293	
C_{F}	Concentration of Fluoride	lb / dscf	3.38E-08	1.70E-08	1.66E-08	2.25E-08
C_{F}	Concentration of Fluoride	mg/dscf	1.533E-02	7.729E-03	7.518E-03	1.019E-02
ER_F	Emission Rate of Fluoride	lb / hr	0.133	0.067	0.065	0.088

TABLE V COMPLETE RESULTS AGRIUM CONDA PHOSPHATE CONDITIONING VENT SCRUBBER

Symb	ool	Description	Dimensions	Run #1	Run #2	Run #3	
I	Date			3/30/05	3/30/05	3/30/05	
В	egin	Time Test Began		13:32	15:16	16:45	
	End	Time Test Ended		14:34	16:19	17:47	
	Pb _m	Meter Barometric Pressure	In. Hg. Abs	23.77	23.77	23.77	
	ΔH	Orifice Pressure Drop	In. H ₂ O	1.501	1.618	1.676	
	Y	Meter Calibration Y Factor	dimensionless	1.016	1.016	1.016	
	Vm	Volume Gas SampledMeter Conditions	cf	49.460	51.812	52.519	
	T_{m}	Avg Meter Temperature	°F	71.0	72.8	80.8	
1	VΔP	Sq Root Velocity Head	Root In. H ₂ O	0.8337	0.8645	0.8806	
V	Vt_{wc}	Weight Water Collected	Grams	20.5	16.9	22.1	
	T_t	Duration of Test	Minutes	60	60	60	
	C_p	Pitot Tube Coefficient	Dimensionless	0.84	0.84	0.84	
	D_n	Nozzle Diameter	Inches	0.2220	0.2220	0.2220	
(CO_2	Volume % Carbon Dioxide	Percent	0.00	0.00	0.00	
	O_2	Volume % Oxygen	Percent	20.90	20.90	20.90	
$N_2 &$	CO	Volume % Nitrogen and Carbon Monoxide	Percent	79.10	79.10	79.10	
Vı	m_{std}	Volume Gas Sampled (Standard)	dscf	39.881	41.651	41.603	
	Vw	Volume Water Vapor	scf	0.967	0.797	1.042	
E	$3w_s$	Fraction H ₂ O in Stack Gas	Fraction	0.023	0.019	0.022	
	X_d	Fraction of Dry Gas	Fraction	0.977	0.981	0.978	
	M_d	Molecular Wt. Dry Gas	lb/lbmol	28.84	28.84	28.84	
	M_s	Molecular Wt. Stack Gas	lb/lbmol	28.59	28.63	28.59	
	%I	Percent Isokinetic	Percent	100.0	100.3	98.7	AVG
	T_s	Avg Stack Temperature	°F				
	A_s	Stack Cross Sectional Area		60.9	60.5	60.6	61
	P_G	Stack Static Pressure	Sq. Ft.	3.142	3.142	3.142	
			In. H ₂ O	-0.49	-0.49	-0.49	
1	Pb _p	Sample Port Barometric Pressure	In. Hg. Abs	23.77	23.77	23.77	
	P _s	Stack Pressure	In. Hg. Abs	23.734	23.734	23.734	
	Q_s	Stack Gas Volumetric Flow Rate (Std)	dscfm	7.77E+03	8.09E+03	8.21E+03	8.02E+03
	Qa	Stack Gas Volumetric Flow Rate (Actual)	cfm	9.89E+03	1.02E+04	1.04E+04	1.02E+04
	V_s	Velocity of Stack Gas	fpm	3.15E+03	3.26F+03	3.32E+03	3.24E+03
M_{FG}	ross	Mass of Fluoride in Sample	mg	0.314	0.312	0.227	
M_{FB}	lank	Mass of Fluoride in Sample Blank	mg	0.00	0.00	0.00	
M_F	Net	Net Mass of Fluoride in Sample	mg	0.314	0.312	0.227	
	$C_{\rm F}$	Concentration of Fluoride	lb / dscf	1.74E-08	1.65E-08	1.20E-08	1.53E-08
	~	Concentration of Fluoride	mg/dscf	7.873E-03	7.491E-03	5.456E-03	6.940E-03
E	R_F	Emission Rate of Fluoride	lb / hr	0.008	0.008	0.006	0.007

M5 13B Nomenclature

%I = percent isokinetic, percent $A_s = \text{stack cross-sectional area (ft}^3$) $AS\Delta P = \sec \sqrt{\Lambda}P$ Btu = unit heat value (British thermal unit) B_{ws} = fraction of water in stack gas C_B = concentration of particulate matter, back half (gr/dscf.lb/dscf. etc.) CB_{back} = concentration of pollutant in back half blank (i.e., mg). "Back" may be replaced with "water" or "acetone", etc. CB_{front} = concentration of pollutant in front half blank (i.e., mg) C_f = concentration of particulate matter, front half (gr/dscf,lb/dscf, etc.) C_{metal} = concentration of metals (ppm, μg/ft³, etc.) atomic symbol replaces "metal" CO_2 = percent carbon dioxide in the stack gas $C_p = \text{pitot tube coefficient } (0.84)$ CX_{back} = concentration of pollutant in back half, species identifier replaces "X" (lb/dscf) CX_{front} = concentration of pollutant in front half, species identifier replaces "X" (lb/dscf) $C_{X \text{ (avg)}} = \text{ species symbol replaces } x$. $C_{X \text{ (corr)}}$ = actual gas concentration corrected to required percent O_2 $\Delta H = \text{ orifice pressure drop (inches H}_2O)$ ΔH_{\odot} = orifice pressure (inches H_2O) $\Delta P = \text{stack flow pressure differential (inches H₂O)}$ $D_s = \text{diameter of the stack (feet)}$ $D_n = \text{nozzle diameter (inches)}$ EA = percent excess air ER_B = emission rate of back half particulate (lb/hr) $ER_F = emission rate of front half particulate (lb/hr)$ ER_{mmBtu} = emission rate per mmBtu or ton of fuel etc. ER_X = emission rate of compound which replaces x ERX_{front} = front half emission rate of compount which replaces "X" ERX_{back} = back half emission rate of compount which replaces "X" k-fact = multiplier of test point ΔP to determine test point ΔH L = length of rectangular stack (inches) mBtu = thousand Btu MB_{front} = mass of pollutant in front half blank (i.e., mg) MB_{back} = mass of pollutant in back half blank (i.e., mg) M_d = molecular weight of stack gas, dry basis (lb/lb-mol) $M_F = \text{mass of particulate on filter (mg)}$ M_{FP} = mass of particulate matter on filter and probe (mg) mmBtu = million Btu $M_P = \text{mass of particulate matter in probe (mg)}$ M_s = molecular weight of stack gas, wet basis (g/gmol) M_{Xfront} = mass of pollutant in front half before applying blank, species symbol replaces "X" (mg) MX_{front} = total mass of pollutant in front half, species symbol replaces "X" (mg) M_{Xback} = mass of pollutant in back half before applying blank, species symbol replaces "X" (mg) MX_{back} = total mass of pollutant in back half, species symbol replaces "X" (mg) N_2 = percent nitrogen in the stack gas O_2 = percent oxygen in the stack gas

 $\sqrt{\Delta P}$ = average of the square roots of ΔP (may also be referred to as AS ΔP)

M5 13B Nomenclature

Pb_m = absolute barometric pressure at the dry gas meter (inches Hg)

Pb_p = absolute barometric pressure at the sample location (inches Hg)

 P_G = stack static pressure (inches H_2O)

 P_s = absolute stack pressure (inches Hg)

 P_{std} = absolute pressure at standard conditions (29.92 inches Hg.)

 $\theta = \text{time of test (minutes)}$

 Q_a = stack gas volumetric flow rate (acfm)

 Q_s = stack gas volumetric flow rate (dscfm)

 Q_W = wet stack gas std. volumetric flow (ft³/min, wscfm)

 $T_s = \text{stack temperature (}^{\circ}F)$

 T_{std} = absolute temperature at standard conditions (528°R)

 $Tt = see \theta$

 $u_m = \text{mean molecular speed (cm/s)}$

 $Vm = sample volume (ft^3) at meter conditions$

Vm_{std} = volume standard (dscf), sample volume adjusted to 68°F and 29.92 inches Hg.

 V_s = velocity of stack gas (fpm)

 V_{wc} = volume water vapor (scf) at 68°F and 29.92 inches Hg.

W = Width of rectangular stack (inches)

 Wt_{wc} = weight of the condensed water collected (grams)

 X_d = fraction of dry gas

Y = meter calibration Y-factor (dimensionless)

$$\%l = Vm_{std} * (T_s + 460) * 1039 / (\theta * V_s * P_s * X_d * D_n^2)$$

$$A_s = Ds^2 / 4 * \pi$$

$$B_{ws} = V_w / (Vm_{std} + V_w)$$

$$C_B = M_B * 0.01543 / Vm_{std}$$

$$C_f = M_{fp} * 0.01543 / Vm_{std}$$

$$CX_{front} = MX_{front} / (Vm_{std} * 1000 * 453.6)$$

$$CX_{back} = MX_{back} / (Vm_{std} * 1000 * 453.6)$$

$$C_{x (corr)} = C_{x (avg)} * (20.9 - desired \%O_2) / (20.9 - actual \%O_2)$$

$$D_{eq} = 2 * L * W / (L + W)$$

$$EA = (\%O_2 - 0.5 \%CO) / [0.264 \%N_2 - (\%O_2 - 0.5 \%CO)]$$

$$ER_B = C_B * Q_s * 0.00857$$

$$ER_F = C_f * Q_s * 0.00857$$

$$ER_{mmBtu} = ER_X / (mmBtu / hr)$$

$$ERX_{front} = CX_{front} * Q_s * 60$$

$$ERX_{back} = CX_{back} * Q_s * 60$$

$$K-fact = 846.72 * Dn^4 * \Delta H_{@} * C_p^2 * X_d^2 * M_d * P_s * (T_m + 460) / [M_s * (T_s + 460) * (Pb_m + \Delta H / 13.6)]$$

$$M_d = CO_2 * 0.44 + O_2 * 0.32 + N_2 * 0.28$$

$$M_s = (M_d * X_d) + (18 * B_{ws})$$

$$P_s = Pb_p + (P_G / 13.6)$$

$$Q_a = V_s * A_s$$

$$Q_s = Qa * Xd * Ps * T_{std} * (Pb_m + \Delta H / 13.6) / [P_{std} * (T_m + 460)]$$

$$V_s = 85.49 * 60 * Cp * \sqrt{\Delta P} * \sqrt{f} (T_s + 460) \% (P_s * M_s)]$$

$$V_w = Wt_{we} * 0.04715$$

$$X_d = 1 - B_{ws}$$

APR 2 9 2005

IDAHO DEPARTMENT OF ENVIRONMENTAL QUALITY

FLUORIDE COMPLIANCE TESTS CONDUCTED ON THE SUPERPHOSPHORIC ACID PLANT STACK

FOR NU-WEST INDUSTRIES, INC. AGRIUM CONDA PHOSHPATE OPERATIONS

SODA SPRINGS, IDAHO

March 31, 2005

by:

TETCO 90 East Main Lehi, UT 84043 Phone: 801 768-0973 Fax: 801 768-0880

Prepared for:

Nu-West Industries, Inc., Agrium 3010 Conda Road Soda Springs, ID 83276

Date of Report:

April 20, 2005

SUMMARY OF RESULTS

Emission Results

Table I shows the fluoride emission results. Table IV in Appendix A has more detailed testing data.

Table I Measured Fluoride Emissions lb/dscf mg/dscf lb/hr 1 9.46E-08 4.29E-02 0.056 2 2.63E-07 1.19E-01 0.157 3 4.05E-07 1.84E-01 0.235 AVE 2.54E-07 1.15E-01 0.149

Allowable Emissions

The allowable fluoride emissions for the Superphosphoric Acid Plant Stack are 9.00870 lb/ton equivalent P_2O_5 feed as found in 40 CFR 63 603 (b).

Process Data

The process was operated according to standard procedures. All pertinent process information was available for recording by agency personnel. Production data will be submitted by Agrium personnel.

Discussion of Errors or Irregularities

None.

TABLE VI COMPLETE RESULTS AGRIUM SUPERPHOSPHORIC ACID PLANT SCRUBBER (SPA)

Symbol	Description		Dimensions	Run #1	Run #2	Run #3	
Date				3/31/05	3/31/05	3/31/05	
Begin	Time Test Began			8:43	10:20	11:48	
End	Time Test Ended			9:47	11:24	12:51	
Pb_{m}	Meter Barometric Pressure		In. Hg. Abs	24.28	24.28	24.28	
ΔH	Orifice Pressure Drop		In. H ₂ O	1.725	1.783	1.725	
Y	Meter Calibration Y Factor		dimensionless	1.016	1.016	1.016	
Vm	Volume Gas SampledMeter Conditions		cf	51.681	52.998	53.124	
$T_{\rm m}$	Avg Meter Temperature		°F	70.3	78.3	82.7	
$\sqrt{\Delta P}$	Sq Root Velocity Head		Root In. H ₂ O	0.4644	0.4705	0.4604	
Wt_{wc}	Weight Water Collected		Grams	13.3	18.6	21.1	
T_t	Duration of Test		Minutes	60	60	60	
C_p	Pitot Tube Coefficient		Dimensionless	0.84	0.84	0.84	
D_n	Nozzle Diameter		Inches	0.3080	0.3080	0.3080	
CO_2	Volume % Carbon Dioxide		Percent	0.00	0.00	0.00	
O_2	Volume % Oxygen		Percent	20.90	20.90	20.90	
N ₂ & CO	Volume % Nitrogen and Carbon Monoxide		Percent	79.10	79.10	79.10	
Vm_{std}	Volume Gas Sampled (Standard)		dscf	42.647	43.095	42.836	
Vw	Volume Water Vapor		scf	0.627	0.877	0.995	
Bw_s	Fraction H ₂ O in Stack Gas		Fraction	0.014	0.020	0.023	
X_d	Fraction of Dry Gas		Fraction	0.986	0.980	0.977	
M_d	Molecular Wt. Dry Gas		lb/lbmol	28.84	28.84	28.84	
M_s	Molecular Wt. Stack Gas		l'albane!	28.68	28.62	28.59	
%I	Percent Isokinetic		Percent	98.5	98.9	100.9	AVG
T_s	Avg Stack Temperature		°F	65.8	68.5	70.2	68
A_{s}	Stack Cross Sectional Area		Sq. Ft.	7.069	7.069	7.069	
P_G	Stack Static Pressure		In H ₂ O	-0.09	-0.09	-0.09	
Pb_{p}	Sample Port Barometric Pressure		In. Hg. Abs	24.24	24.24	24.24	
P_{s}	Stack Pressure		ln. Hg. Abs	24.233	24.233	24.233	
Q_s	Stack Gas Volumetric Flow Rate (Std)		dscfm	9.86E+03	9.92E+03	9.67E+03	9.82E+03
Q _a	Stack Gas Volumetric Flow Rate (Actual)		cfm	1.23E+04	1.25E+04	1.23E+04	1.24E+04
V_s	Velocity of Stack Gas		fpm	1.74E+03	1.77E+03	1.74E+03	1.75E+03
	velocity of Stack Gas	18 1 5	· ipiii		1.7712103	1.746.03	1.7512105
$M_{F Gross}$	Mass of Fluoride in Sample		mg	1.83	5.14	7.86	
$M_{ ext{F Blank}}$	Mass of Fluoride in Sample Blank	, ,	mg	0.00	0.00	0.00	
$M_{F\ Net}$	Net Mass of Fluoride in Sample		mg	1.83	5.14	7.86	
C_{F}	Concentration of Fluoride		lb / dscf	9.460E-08	2.629E-07	4.045E-07	2.540E-07
C_F	Concentration of Fluoride		mg/dscf	4.291E-02	1.193E-01	1.835E-01	1.152E-01
ER_F	Emission Rate of Fluoride		lb/hr	0.056	0.157	0.235	0.149